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Abstract

We characterize all stationary time-reversible Markov processes whose finite-dimensional
marginal distributions (of all orders) are infinitely divisible. Aside from two trivial cases (iid
and constant), every such process with full support in both discrete and continuous time is
a branching process with Poisson or Negative Binomial marginal distributions and a specific
bivariate distribution at pairs of times.
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1 Introduction

Many applications feature autocorrelated count data Xt at discrete times t. A number of authors
have constructed and studied stationary stochastic processes Xt whose one-dimensional marginal
distributions come from an arbitrary infinitely-divisible distribution family {µθ}, such as the Poisson
Po(θ) or negative binomial NB(θ, p), and that are “AR(1)-like” in the sense that their autocorrelation
function is Corr[Xs,Xt] = ρ|s−t| for some ρ ∈ (0, 1) (Lewis, 1983; Lewis, McKenzie and Hugus, 1989;
McKenzie, 1988; Al-Osh and Alzaid, 1987; Joe, 1996). The most common approach is to build a
time-reversible Markov process using thinning, in which the process at any two consecutive times
may be written in the form

Xt−1 = ξt + ηt Xt = ξt + ζt

with ξt, ηt, and ζt all independent and from the same infinitely-divisible family (see Sec. (1.1) below
for details). A second construction of a stationary time-reversible process with the same one-
dimensional marginal distributions and autocorrelation function, with the feature that its finite-
dimensional marginal distributions of all orders are infinitely-divisible, is to set Xt := N (Gt) for a
random measure N on some measure space (E, E ,m) that assigns independent infinitely-divisible
random variables N (Ai) ∼ µθi to disjoint sets Ai ∈ E of measure θi = m(Ai), and a family of sets
{Gt} ⊂ E whose intersections have measure m

(

Gs ∩Gt

)

= θρ|s−t| (see Sec. (1.2)).
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For the normal distribution Xt ∼ No(µ, σ2), these two constructions both yield the usual Gaus-
sian AR(1) process. The two constructions also yield identical processes for the Poisson Xt ∼ Po(θ)
distribution, but they differ for all other nonnegative integer-valued infinitely-divisible distributions.
For each nonnegative integer-valued infinitely-divisible marginal distribution except the Poisson,
the process constructed by thinning does not have infinitely-divisible marginal distributions of all
orders (Theorem 2, Sec. (3.5)), and the process constructed using random measures does not have
the Markov property (Theorem3, Sec. (3.5)). Thus none of these is completely satisfactory for
modeling autocorrelated count data with heavier tails than the Poisson distribution.

In the present manuscript we construct and characterize every process that is Markov, infinitely-
divisible, stationary, and time-reversible with non-negative integer values. The formal characteri-
zation is contained in the statement of Theorem 1 in Sec. (3.5), which follows necessary definitions
and the investigation of special cases needed to establish the general result.

1.1 Thinning Process

Any univariate infinitely-divisible (ID) distribution µ(dx) on R
1 is µ1 the for a convolution semi-

group {µθ : θ ≥ 0} and, for 0 < θ < ∞ and 0 < ρ < 1, determines uniquely a “thinning
distribution” µθ

ρ(dy | x) of Y conditional on the sum X = Y + Z of independent Y ∼ µρθ and

Z ∼ µ(1−ρ)θ. This thinning distribution determines a unique stationary time-reversible Markov
process with one-step transition probability distribution given by the convolution

P[Xt+1 ∈ A | Ft] =

∫

ξ+ζ∈A
µ(1−ρ)θ(dζ) µθ

ρ(dξ | Xt)

for Borel sets A ⊂ R, where Ft = σ{Xs : s ≤ t} is the minimal filtration. By induction the
auto-correlation is Corr(Xs,Xt) = ρ|s−t| for square-integrable Xt. The process can be constructed
beginning at any t0 ∈ Z by setting

Xt0 ∼ µθ(dx) (1a)

ξt ∼ µθ
ρ(dξ | x) with x =

{

Xt−1 if t > t0

Xt+1 if t < t0
(1b)

Xt := ξt + ζt for ζt ∼ µθ(1−ρ)(dζ). (1c)

Time-reversibility and hence the lack of dependence of this definition on the choice of t0 can be
verified as in the proof of Theorem2 in Sec. (3.5) below.

1.1.1 Thinning Example 1: Poisson

For Xt ∼ µθ = Po(θ), for example, the Poisson distribution with mean θ, the thinning recursion
step for t > t0 can be written

Xt = ξt + ζt for independent:

ξt ∼ Bi
(

Xt−1, ρ
)

, ζt ∼ Po
(

θ(1−ρ)
)

and hence the joint generating function at two consecutive times is

φ(s, z) = E

[

sXt−1zXt

]

= exp
{

(s+ z − 2)θ(1−ρ) + (s z − 1)θρ
}

.

This was called the “Poisson AR(1) Process” by McKenzie (1985) and has been studied by many
other authors.
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1.1.2 Thinning Example 2: Negative Binomial

In the thinning process applied to the Negative Binomial Xt ∼ µθ = NB(θ, p) distribution with
mean θ(1−p)/p, recursion for t > t0 takes the form

Xt = ξt + ζt for independent:

ξt ∼ BB
(

Xt−1; θρ, θ(1−ρ)
)

, ζt ∼ NB
(

θ(1−ρ), p
)

for beta-binomial distributed ξt ∼ BB(n;α, β) (see Johnson et al., 2005, §2.2) with n = Xt−1,
α = θρ, and β = θ(1−ρ), and negative binomial ζt ∼ NB

(

θ(1−ρ), p
)

. Thus the joint generating
function is

φ(s, z) = E

[

sXt−1zXt

]

= pθ(2−ρ)(1 − q s)−θ(1−ρ) (1 − q z)−θ(1−ρ) (1 − q s z)−θρ (2)

from which one can compute the conditional generating function

φ(z | x) = E
[

zXt | Xt−1 = x
]

=

(

p

1 − qz

)θ(1−ρ)

2F1(θρ,−x; θ; 1 − z)

where 2F1(a, b; c; z) is Gauss’ hypergeometric function (Abramowitz and Stegun, 1964, §15) and,
from this (for comparison below),

P[Xt−1 = 0,Xt+1 = 0 | Xt = 2] = [pθ(1−ρ)
2F1(θρ,−x; θ; 1)]

2

=
[

pθ(1−ρ)(1−ρ)
]2

[

1 + θ(1−ρ)

1 + θ

]2

. (3)

This process, as we will see below in Theorem 2, is Markov, stationary, and time-reversible, with
infinitely-divisible one-dimensional marginal distributions Xt ∼ NB(θ, p), but the joint marginal
distributions at three or more consecutive times are not ID. It appears to have been introduced by
Joe (1996, p. 665).

1.2 Random Measure Process

Another approach to the construction of processes with specified stationary distribution µθ(dx) is
to set Xt := N (Gt) for a random measure N and a class of sets {Gt}, as in (Wolpert and Taqqu,
2005, §3.3, 4.4). We begin with a countably additive random measure N (dx dy) that assigns
independent random variables N (Ai) ∼ µ|Ai| to disjoint Borel sets Ai ∈ B(R2) of finite area |Ai|
(this is possible by the Kolmogorov consistency conditions), and a collection of sets

Gt :=
{

(x, y) : x ∈ R, 0 ≤ y < θλ e−2λ|t−x|
}

(shown in Fig. (1)) whose intersections satisfy |Gs ∩Gt| = θe−λ|s−t|. For t ∈ Z, set

Xt := N (Gt). (4)
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Figure 1: Random measure construction of process Xt = N (Gt)

For any n times t1 < t2 < · · · < tn the sets {Gti} partition R
2 into n(n+1)/2 sets of finite area (and

one with infinite area, (∪Gti)
c), so each Xti can be written as the sum of some subset of n(n+1)/2

independent random variables. In particular, any n = 2 variables Xs and Xt can be written as

Xs = N (Gs\Gt) + N (Gs ∩Gt), Xt = N (Gt\Gs) + N (Gs ∩Gt)

just as in the thinning approach, so both 1-dimensional and 2-dimensional marginal distributions
for the random measure process coincide with those for the thinning process of Sec. (1.1).

Evidently the process Xt constructed from this random measure is stationary, time-reversible
and infinitely divisible in the strong sense that all finite-dimensional marginal distributions are ID.
Although the 1- and 2-dimensional marginal distributions of this process coincide with those of
the thinning process, the k-dimensional marginals may differ for k ≥ 3, so this process cannot be
Markov. We will see in Theorem 3 below that the only nonnegative integer-valued distribution for
which it is Markov is the Poisson.

1.2.1 Random Measure Example 1: Poisson

The conditional distribution of Xtn = N (Gtn) given {Xtj : j < n} can be written as the sum of
n independent terms, (n − 1) of them with binomial distributions (all with the same probability
parameter p = ρ|tn−tn−1|, and with size parameters that sum to Xtn−1

) and one with a Poisson
distribution (with mean θ(1− ρ|tn−tn−1|). It follows by induction that the random-measure Poisson
process is identical in distribution to the thinning Poisson process of Sec. (1.1.1).

1.2.2 Random Measure Example 2: Negative Binomial

The random variables X1, X2, X3 for the random measure process built on the Negative Binomial
distribution Xt ∼ NB(θ, p) with autocorrelation ρ ∈ (0, 1) can be written as sums

X1 = ζ1 + ζ12 + ζ123 X2 = ζ2 + ζ12 + ζ23 + ζ123 X3 = ζ3 + ζ23 + ζ123
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of six independent negative binomial random variables ζs ∼ NB(θs, p) with shape parameters

θ1 = θ3 = θ(1−ρ), θ2 = θ(1−ρ)2, θ12 = θ23 = θρ(1−ρ), θ123 = θρ2

(each ζs = N
(

∩t∈s Gt

)

and θs = | ∩t∈s Gt| in Fig. (1)). It follows that the conditional probability

P[X1 = 0, X3 = 0 | X2 = 2] = P[ζ1 = ζ12 = ζ123 = ζ23 = ζ3 = 0 | ζ2 + ζ12 + ζ23 + ζ123 = 2]

=
P[ζ2 = 2, all other ζs = 0]

P[X2 = 2]

=
[

pθ(1−ρ)(1−ρ)
]2 1 + θ(1−ρ)2

1 + θ
(5)

differs from that of the thinning negative binomial process in Eqn. (3) for all θ > 0 and ρ > 0. Thus
this process is stationary, time-reversible, and has infinitely-divisible marginal distributions of all
orders, but it cannot be Markov since its 2-dimensional marginal distributions coincide with those
of the Markov thinning process but its 3-dimensional marginal distributions do not.

In this paper we characterize every process that is Markov, Infinitely-divisible, Stationary, and
Time-reversible with non-negative Integer values (“MISTI” for short).

2 MISTI Processes

A real-valued stochastic processXt indexed by t ∈ Z is stationary if each finite-dimensional marginal
distribution

µT (B) := P [XT ∈ B]

satisfies
µT (B) = µs+T (B) (6a)

for each set T ⊂ Z of cardinality |T | <∞, Borel set B ∈ B(R|T |), and s ∈ Z, where as usual “s+T”
denotes {(s+ t) : t ∈ T}. A stationary process is time-reversible if also

µT (B) = µ−T (B) (6b)

(where “−T” is {−t : t ∈ T}) and Markov if for every t ∈ Z and finite T ⊂ {s ∈ Z : s ≥ t},

P[XT ∈ B | Ft] = P[XT ∈ B | Xt] (6c)

for all B ∈ B(R|T |), where Ft := σ{Xs : s ≤ t}. The process Xt is Infinitely Divisible (ID) or,
more specifically, multivariate infinitely divisible (MVID) if each µT is the n-fold convolution of

some other distribution µ
(1/n)
T for each n ∈ N. This is more restrictive than requiring only that the

one-dimensional marginal distributions be ID and, for integer-valued processes that satisfy

µT (Z|T |) = 1, (6d)

it is equivalent (by the Lévy-Khinchine formula; see, for example, Rogers and Williams, 2000, p. 74)
to the condition that each µT have characteristic function of the form

∫

R|T |

eiω
′x µT (dx) = exp

{
∫

Z|T |

(

eiω
′u − 1

)

νT (du)

}

, ω ∈ R
|T | (6e)

for some finite measure νT on B(Z|T |). Call a process Xt or its distributions µT (du) MISTI if it
is Markov, nonnegative Integer-valued, Stationary, Time-reversible, and Infinitely divisible, i.e.,
satisfies Eqns. (6a–6e). We now turn to the problem of characterizing all MISTI distributions.
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2.1 Three-dimensional Marginals

By stationarity and the Markov property all MISTI finite-dimensional distributions µT (du) are
determined completely by the marginal distribution for Xt at two consecutive times; to exploit the
MVID property we will study the three-dimensional marginal distribution for Xt at any set T of
|T | = 3 consecutive times— say, T = {1, 2, 3}. By Eqn. (6e) we can represent X{1,2,3} in the form

X1 =
∑

iNi++ X2 =
∑

jN+j+ X3 =
∑

kN++k

for independent Poisson-distributed random variables

Nijk
ind
∼ Po(λ ijk)

with means λ ijk := ν({(i, j, k)}); here and hereafter, a subscript “+” indicates summation over
the entire range of that index— N0 = {0, 2 . . . } for {Nijk} and {λ ijk}, N = {1, 2, . . . } for {θj}.
The sums θj := λ+j+ for j ≥ 1 characterize the univariate marginal distribution of each Xt— for
example, through the probability generating function (pgf)

ϕ(z) := E[zXt ] = exp
[

∑

j≥1

(

zj − 1
)

θj

]

.

To avoid trivial technicalities we will assume that 0 < P[Xt = 1] = ϕ′(0) = θ1e
−θ+ , i.e., θ1 > 0.

Now set ri := λ i1+/θ1, and for later use define functions:

ψj(s, t) :=
∑

i,k≥0

sitkλ ijk p(s) := ψ1(s, 1)/θ1 =
∑

i≥0

si ri P (z) :=
∑

j≥1

zj θj. (7)

Since ri and θj are nonnegative and summable (by Eqns. (6d, 6e)), p(s) and P (z) are analytic on
the open unit ball U ⊂ C and continuous on its closure. Similarly, since λ ijk is summable, each
ψj(s, t) is analytic on U

2 and continuous on its closure. Note ψj(1, 1) = θj, p(0) = r0 and p(1) = 1,
while P (0) = 0 and P (1) = θ+; also ϕ(z) = exp {P (z) − θ+}. Each ψj(s, t) = ψj(t, s) is symmetric
by Eqn. (6b), as are the conditional probability generating functions:

ϕ(s, t | z) := E
[

sX1tX3 | X2 = z
]

.

2.1.1 Conditioning on X2 = 0

By the Markov property Eqn. (6c), X1 and X3 must be conditionally independent given X2, so the
conditional probability generating function must factor:

ϕ(s, t | 0) := E
[

sX1tX3 | X2 = 0
]

= E
[

s
P

i≥0
iNi0+ t

P

k≥0
kN+0k

]

= exp
{

∑

i,k≥0

(

sitk − 1
)

λ i0k

}

≡ ϕ(s, 1 | 0) ϕ(1, t | 0). (8)

Taking logarithms,

∑

(

sitk − 1
)

λ i0k ≡
∑

(

si − 1
)

λ i0k +
∑

(

tk − 1
)

λ i0k
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or, for all s and t in the unit ball in C,

0 ≡
∑

(si − 1)(tk − 1
)

λ i0k. (9)

Thus λ i0k = 0 whenever both i > 0 and k > 0 and, by symmetry,

ϕ(1, z | 0) = ϕ(z, 1 | 0) = exp
{

∑

i≥0
(zi − 1)λ i00

}

.

2.1.2 Conditioning on X2 = 1

Similarly

ϕ(s, t | 1) := E
[

sX1tX3 | X2 = 1
]

= E
[

s
P

i≥0 i(Ni0++Ni1+) t
P

k≥0 k(N+0k+N+1k) | N+1+ = 1
]

= ϕ(s, t | 0)E
[

s
P

i≥0
iNi1+ t

P

k≥0
kN+1k | N+1+ = 1

]

= ϕ(s, t | 0)







∑

i,k≥0

sitk
[

λ i1k/λ+1+

]







since {Ni1k} is conditionally multinomial given N+1+ and independent of {Ni0k}. By the Markov
property this too must factor, as ϕ(s, t | 1) = ϕ(s, 1 | 1)ϕ(1, t | 1), so by Eqn. (8)

θ1

{

∑

i,k≥0
sitkλ i1k

}

=
{

∑

i≥0
siλ i1+

} {

∑

k≥0
tkλ+1k

}

or, since λ i1k = λ k1i by Eqns. (6b, 7),

ψ1(s, t) :=
∑

i,k≥0
sitkλ i1k = θ1p(s) p(t),

ϕ(s, t | 1) = ϕ(s, t | 0) p(s) p(t).

2.1.3 Conditioning on X2 = 2

The event {X2 = 2} for X2 :=
∑

j≥1 jN+j+ can happen in two ways: either N+1+ = 2 and each
N+j+ = 0 for j ≥ 2, or N+2+ = 1 and N+j+ = 0 for j = 1 and j ≥ 3, with N+0+ unrestricted in
each case. These two events have probabilities (θ1

2/2)e−θ+ and (θ2)e
−θ+ , respectively, so the joint

generating function for {X1,X3} given X2 = 2 is

ϕ(s, t | 2) := E
[

sX1tX3 | X2 = 2
]

= E
[

s
P

i≥0 i(Ni0++Ni1++Ni2+) t
P

k≥0 k(N+0k+N+1k+N+2k) | N+1+ + 2N+2+ = 2
]

= ϕ(s, t | 0)







θ1
2/2

θ1
2/2 + θ2





∑

i,k≥0

sitkλ i1k/λ+1+





2

+
θ2

θ1
2/2 + θ2





∑

i,k≥0

sitkλ i2k/λ+2+











=
ϕ(s, t | 0)

θ1
2/2 + θ2







θ1
2

2





∑

i,k≥0

sitkλ i1k/θ1





2

+ θ2





∑

i,k≥0

sitkλ i2k/θ2











=
ϕ(s, t | 0)

θ1
2/2 + θ2

{

θ1
2

2
p(s)2p(t)2 + ψ2(s, t)

}

. (10)
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In view of Eqn. (8), this will factor in the form ϕ(s, t | 2) = ϕ(s, 1 | 2)ϕ(1, t | 2) as required by
Markov property Eqn. (6c) if and only if for all s, t in the unit ball:

[

θ1
2

2
+ θ2

] [

θ1
2

2
p(s)2p(t)2 + ψ2(s, t)

]

=

[

θ1
2

2
p(s)2 + ψ2(s, 1)

] [

θ1
2

2
p(t)2 + ψ2(1, t)

]

or

θ1
2

2

[

θ2p(s)
2p(t)2 − p(s)2ψ2(1, t) − ψ2(s, 1)p(t)

2 + ψ2(s, t)
]

=
[

ψ2(s, 1)ψ2(1, t) − θ2ψ2(s, t)
]

.

To satisfy the ID requirement of Eqn. (6e), this must hold with each θj replaced by θj/n for each
integer n ∈ N. Since the left and right sides are homogeneous in θ of degrees 3 and 2 respectively,
this will only happen if each square-bracketed term vanishes identically, i.e., if

θ2ψ2(s, t) ≡ ψ2(s, 1)ψ2(1, t)

and

0 = θ2

[

θ2p(s)
2p(t)2 − p(s)2ψ2(1, t) − ψ2(s, 1)p(t)

2
]

+ ψ2(s, 1)ψ2(1, t)

=
[

θ2p(s)
2 − ψ2(s, 1)

] [

θ2p(t)
2 − ψ2(1, t)

]

,

so

ψ2(s, t) :=
∑

i,k≥0

sitkλ i2k = θ2p(s)
2 p(t)2,

ϕ(s, t | 2) = ϕ(s, t | 0) p(s)2p(t)2.

2.1.4 Conditioning on X2 = j

The same argument applied recursively, using the Markov property for each j ≥ 1 in succession,
leads to:

[θ1
j

j!
+ · · · + θ1θj−1

][

θjp(s)
jp(t)j − p(s)jψj(1, t) − ψj(s, 1)p(t)

j + ψj(s, t)
]

=
[

ψj(s, 1)ψj(1, t) − θjψj(s, t)
]

so
ψj(s, t) :=

∑

i,k≥0

sitkλ ijk = θj p(s)
jp(t)j , j ≥ 1 (11)

and consequently

ϕ(s, t | j) = E
[

sX1tX3 | X2 = j
]

=
[

ϕ(s, 1 | 0) p(s)j
] [

ϕ(1, t | 0) p(t)j
]

.

Conditionally on {X2 = j}, X1 and X3 are distributed independently, each as the sum of j indepen-
dent random variables with generating function p(s), plus one with generating function ϕ(s, 1 | 0)—

8



so Xt is a branching process (Harris, 1963) whose unconditional three-dimensional marginal distri-
butions have generating function:

ϕ(s, z, t) := E
[

sX1zX2tX3
]

= ϕ(s, t | 0)
∑

j≥0

zjp(s)jp(t)jP[X2 = j]

= ϕ(s, t | 0)E [zp(s)p(t)]X2

= ϕ(s, t | 0)ϕ
(

zp(s)p(t)
)

= ϕ(s, t | 0) exp
[

P
(

zp(s)p(t)
)

− θ+
]

. (12)

See Secs. 4.3 and 5 for further development of this branching process representation.

2.2 Stationarity

Without loss of generality we may take λ 000 = 0. By Eqn. (11) with s = 0 and t = 1 we have
λ 0j+ = θjr0

j ; by Eqn. (9) we have λ i00 = λ i0+. By time-reversibility we conclude that λ i00 = 0 for
i = 0 and, for i ≥ 1,

λ i00 = θir0
i. (13)

Now we can evaluate
ϕ(s, t | 0) = exp {P (s r0) + P (t r0) − 2P (r0)}

and, from this and Eqn. (12), evaluate the joint generating function for X{1,2,3} as:

ϕ(s, z, t) = exp
{

P
(

z p(s)p(t)
)

− θ+ + P (s r0) + P (t r0) − 2P (r0)
}

, j ≥ 1 (14)

and so that for X{1,2} as:

ϕ(s, z, 1) = exp
{

P
(

z p(s)
)

− θ+ + P (s r0) − P (r0)
}

. (15)

Now consider Eqn. (11) with t = 1,

∑

i≥0

siλ ij+ = θj p(s)
j. (16)

It follows first for j = 1 and then for i = 1 that

λ i1+ = θ1ri i ≥ 1

λ 1j+ = θj [jr0
j−1r1] j ≥ 1

so again by time reversibility with i = j, since θ1 > 0, we have

rj = θj [j r0
j−1r1]/θ1 j ≥ 1. (17)

Thus r0, r1, and {θj} determine all the {rj} and so all the {λ ijk} by Eqns. (11, 13) and hence the
joint distribution of {Xt}.
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Now consider Eqn. (16) first for j = 2 and then i = 2:

∑

i≥0

siλ ij+ = θj

[

∑

i≥0
siri

]j

λ i2+ = θ2

i
∑

k=0

rkri−k i ≥ 2

λ 2j+ = θj

[

jr0
j−1r2 +

(

j

2

)

r0
j−2r1

2

]

j ≥ 2

Equating these for i = j ≥ 2 (by time-reversibility) and applying Eqn. (17) for 0 < k < i (the cases
k = 0 and k = i need to be handled separately),

r0
i−2r1

2

[

θ2
∑

0<k<i

θkθi−kk(i− k) − θi
i(i− 1)

2
θ1

2

]

= 0. (18)

3 The Solutions

Eqn. (18) holds for all i ≥ 2 if r0 = 0 or r1 = 0, leaving rj = 0 by Eqn. (17) for all j ≥ 2, hence
r0 + r1 = 1 and {θj} is restricted only by the conditions θ1 > 0 and θ+ <∞.

3.1 The Constant Case

The case r0 = 0 leads to r1 = 1 and rj = 0 for all j 6= 1, so p(z) ≡ z. By Eqn. (14) the joint pgf is

ϕ(s, z, t) = exp {P (s z t) − θ+} ,

so X1 = X2 = X3 and all {Xt} are identical, with an arbitrary ID distribution.

3.2 The IID Case

The case r1 = 0 leads to r0 = 1 and rj = 0 for all j 6= 0 so p(z) ≡ 1 and

ϕ(s, z, t) = exp {P (s) + P (z) + P (t) − 3θ+}

by Eqn. (14), making all {Xt} independent, with identical but arbitrary ID distributions.

3.3 The Poisson Case

Aside from these two degenerate cases, we may assume r0 > 0 and r1 > 0, and (by Eqn. (17))
rewrite Eqn. (18) in the form:

ri =
r2

r12(i− 1)

i−1
∑

k=1

rkri−k, i ≥ 2,

whose unique solution for all integers i ≥ 1 (by induction) is

ri = r1(r2/r1)
i−1. (19)
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If r2 = 0, then again ri = 0 for all i ≥ 2 but, by Eqn. (17), θj = 0 for all j ≥ 2; thus P (z) = θ1z so
each Xt ∼ Po(θ1) has a Poisson marginal distribution with mean θ1 = θ+. In this case r0 + r1 = 1,
p(z) = r0 + r1z, and the two-dimensional marginals (by Eqn. (15)) of X1, X2 have joint pgf

ϕ(s, z) = exp
{

P
(

z p(s)
)

− θ+ + P (s r0) − P (r0)
}

(20)

= exp {θ1r0(s + z − 2) + θ1r1(sz − 1)} ,

the bivariate Poisson distribution (Johnson, Kotz and Balakrishnan, 1997, § 37.2), so Xt is the
familiar “Poisson AR(1) Process” of McKenzie (1985, 1988) (with autocorrelation ρ = r1) con-
sidered in Sec. (1.1.1). Its connection with Markov branching processes was recognized earlier
by Steutel, Vervaat and Wolfe (1983). By Eqn. (20) the conditional distribution of Xt+1, given
Ft := σ {Xs : s ≤ t}, is that of the sum of Xt independent Bernoulli random variables with pgf
p(s) and a Poisson innovation term with pgf exp{P (r0s) − P (r0)}, so the Markov process Xt may
be written recursively starting at any t0 as

Xt0 ∼ Po(θ+)

Xt = ξt + ζt, where ξt ∼ Bi(Xt−1, r1) and ζt ∼ Po(θtr0)

(all independent) for t > t0, the thinning construction of Sec. (1)

3.4 The Negative Binomial case

Finally if r0 > 0, r1 > 0, and r2 > 0, then (by Eqn. (19)) ri = r1(qr0)
i−1 for i ≥ 1 and hence (by

Eqn. (17)) θj = αqj/j for j ≥ 1 with q := (1 − r0 − r1)/r0(1 − r0) and α := θ1/q. The condition
θ+ < ∞ entails q < 1 and θ+ = −α log(1−q). The 1-marginal distribution is Xt ∼ NB(α, p) with
p := (1−q), and the functions P (·) and p(·) are P (z) = −α log(1 − qz), p(s) = r0 + r1s/(1 − qr0s),
so the joint pgf for the 2-marginal distribution of X1,X2 is

ϕ(s, z) = exp
{

P
(

z p(s)
)

− θ+ + P (s r0) − P (r0)
}

= p2α[(1 − qρ) − q(1−ρ)(s+ z) + q(q − ρ)sz]−α (21)

with one-step autocorrelation ρ := (1−r0)
2/r1. This bivariate distribution was introduced by

Edwards and Gurland (1961) as the “compound correlated bivariate Poisson”, but we prefer to call
it the Branching Negative Binomial distribution. In the branching formulation Xt may be viewed
as the sum of Xt−1 iid random variables with pgf p(s) = r0 + r1s/(1 − qr0s) and one with pgf
exp {P (sr0) − P (r0)} = (1 − qr0)

α(1 − qr0 s)
−α. The first of these may be viewed as Yt plus a

random variable with the NB(Yt, 1−qr0) distribution, for Yt ∼ Bi(Xt−1, 1− r0), and the second has
the NB(α, 1−qr0) distribution, so a recursive updating scheme beginning with Xt0 ∼ NB(α, p) is:

Xt = Yt + ζt, where Yt ∼ Bi(Xt−1, 1−r0) and ζt ∼ NB(α+ Yt, 1−qr0).

In the special case of ρ = q the joint pgf simplifies to ϕ(s, z) = pα[1 + q(1− s− z)]−α and the joint
distribution of X1,X2 reduces to the negative trinomial distribution (Johnson et al., 1997, Ch. 36)
with pmf

P[X1 = i,X2 = j] =
Γ(α+ i+ j)

Γ(α) i! j!

(

1 − q

1 + q

)α (

q

1 + q

)i+j

and simple recursion Xt | Xt−1 ∼ NB
(

α+Xt−1,
1

1+q

)

.
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3.5 Results

We have just proved:

Theorem 1. Let {Xt} be a Markov process indexed by t ∈ Z taking values in the non-negative
integers N0 that is stationary, time-reversible, has infinitely-divisible marginal distributions of all
finite orders, and satisfies P[Xt = 1] > 0. Then {Xt} is one of four processes:

1. Xt ≡ X0 ∼ µ0(dx) for an arbitrary ID distribution µ0 on N0 with µ0({1}) > 0;

2. Xt
iid
∼ µ0(dx) for an arbitrary ID distribution µ0 on N0 with µ0({1}) > 0;

3. For some θ > 0 and 0 < ρ < 1, Xt ∼ Po(θ) with bivariate joint generating function

E
[

sX1 zX2
]

= exp {θ(1−ρ)(s − 1) + θ(1−ρ)(z − 1) + θρ(sz − 1)}

and hence correlation Corr(Xs,Xt) = ρ|s−t| and recursive update

Xt = ξt + ζt, where ξt ∼ Bi(Xt−1, ρ) and ζt ∼ Po
(

θ(1−ρ));

4. For some α > 0, 0 < p < 1, and 0 < ρ < 1, Xt ∼ NB(α, p), with bivariate joint generating
function

E
[

sX1 zX2
]

= p2α[(1 − qρ) − q(1−ρ)(s+ z) + q(q − ρ)sz]−α

where q = 1−p, and hence correlation Corr(Xs,Xt) = ρ|s−t| and recursive update

Xt = Yt + ζt, where Yt ∼ Bi
(

Xt−1, ρ p/(1 − ρq)
)

and ζt ∼ NB
(

α+ Yt, p/(1 − ρq)
)

.

Note the limiting cases of autocorrelation ρ = 1 and ρ = 0 in cases 3., 4. are subsumed by the
degenerate cases 1. and 2., respectively. From this theorem follows:

Theorem 2. Let
{

µθ : θ ≥ 0
}

be an ID semigroup of probability distributions on the nonnegative
integers N0 with µθ({1}) > 0. Fix θ > 0 and 0 < ρ < 1 and let {Xt} be the “thinning process” of
Eqn. (1) in Sec. (1.1) with the representation

Xt−1 = ξt + ηt Xt = ξt + ζt (22)

for each t ∈ Z with independent

ξt ∼ µρθ(dξ) ηt ∼ µ(1−ρ)θ(dη) ζt ∼ µ(1−ρ)θ(dζ).

Then Xt is Markov, stationary, time-reversible, and nonnegative integer valued, but it does not
have infinitely-divisible marginal distributions of all orders unless {µθ} is the Poisson family.

Proof. By construction Xt is obviously Markov and stationary. The joint distribution of the process
at consecutive times is symmetric (see Eqn. (22)) since the marginal and conditional pmfs

p(x) := µθ({x}), q(y | x) :=

∑

z µ
ρθ({z}) µ(1−ρ)θ({x− z}) µ(1−ρ)θ({y − z})

µθ({x})
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of Xt and Xt | Xt−1 satisfy the symmetric relation

p(x) q(y | x) = q(x | y) p(y).

Applying this inductively, for any s < t and any {xs, · · · , xt} ⊂ N0 we find

P[Xs = xs, · · · ,Xt = xt] = p(xs) q(xs+1 | xs) q(xs+2 | xs+1) · · · q(xt | xt−1)

= q(xs | xs+1)p(xs+1) q(xs+2 | xs+1) · · · q(xt | xt−1)

= · · ·

= q(xs | xs+1)q(xs+1 | xs+2) · · · q(xt−1 | xt) p(xt),

and so the distribution ofXt is time-reversible. Now suppose that it is also ID. Then by Theorem 1 it
must be one of the four specified processes: constant, iid, branching Poisson, or branching negative
binomial.

Since ρ < 1 it cannot be the constant {Xt ≡ X0} process; since ρ > 0 it cannot be the indepen-

dent
{

Xt
iid
∼ µθ(dx)

}

process. The joint generating function φ(s, z) at two consecutive times for the

negative binomial thinning process, given in Eqn. (2), differs from that for the negative binomial
branching process, given in Eqn. (21). The only remaining option is the Poisson branching process
of Sec. (1.1.1).

Theorem 3. Let
{

µθ : θ ≥ 0
}

be an ID semigroup of probability distributions on the nonnegative
integers N0 with µθ({1}) > 0. Fix θ > 0 and 0 < ρ < 1 and let {Xt} be the “random measure
process” of Eqn. (4) in Sec. (1.2). Then Xt is ID, stationary, time-reversible, and nonnegative
integer valued, but it is not a Markov process unless {µθ} is the Poisson family.

Proof. By construction Xt is ID, stationary, and time-reversible; suppose that it is also Markov.
Then by Theorem 1 it must be one of the four specified processes: constant, iid, branching Poisson,
or branching negative binomial.

Since ρ < 1 it cannot be the constant {Xt ≡ X0} process; since ρ > 0 it cannot be the indepen-

dent
{

Xt
iid
∼ µθ(dx)

}

process. The joint generating function φ(s, z) at two consecutive times for the

negative binomial random measure process coincides with that for the negative binomial thinning
process, given in Eqn. (2), and differs from that for the negative binomial branching process, given
in Eqn. (21). The only remaining option is the Poisson branching process of Sec. (1.1.1).

4 Continuous Time

Now consider N0-valued time-reversible stationary Markov processes indexed by continuous time
t ∈ R. The restriction of any such process to t ∈ Z will still be Markov, hence MISTI, so there
can be at most two non-trivial ones— one with univariate Poisson marginal distributions, and one
with univariate Negative Binomial distributions. Both do in fact exist.

4.1 Continuous-Time Poisson Branching Process

Fix θ > 0 and λ > 0 and construct a nonnegative integer-valued Markov process with generator

Af(x) =
∂

∂s
E[f(Xs) − f(Xt) | Xt = x]

∣

∣

∣

s=t

= λθ
[

f(x+ 1) − f(x)]
]

+ λx
[

f(x− 1) − f(x)
]

(23a)
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or, less precisely but more intuitively, for all i, j ∈ N0 and ǫ > 0,

P
[

Xt+ǫ = i | Xt = j
]

= o(ǫ) +











ǫλθ i = j + 1

1 − ǫλ(θ + j) i = j

ǫλj i = j − 1

(23b)

Xt could be described as a linear death process with immigration. In Sec. (4.4) we verify that its
univariate marginal distribution and autocorrelation are

Xt ∼ Po(θ)

Corr(Xs,Xt) = e−λ|s−t|,

and its restriction to integer times t ∈ Z is precisely the process described in Sec. (3) item 3, with
one-step autocorrelation ρ = e−λ.

4.2 Continuous-Time Negative Binomial Branching Process

Now fix θ > 0, λ > 0, and 0 < p < 1 and construct a nonnegative integer-valued Markov process
with generator

Af(x) =
∂

∂s
E[f(Xs) − f(Xt) | Xt = x]

∣

∣

∣

s=t

=
λ(α+ x)(1−p)

p

[

f(x+ 1) − f(x)]
]

+
λx

p

[

f(x− 1) − f(x)
]

(24a)

or, for all i, j ∈ N0 and ǫ > 0,

P
[

Xt+ǫ = i | Xt = j
]

= o(ǫ) +











ǫλ(α+ j)(1−p)/p i = j + 1

1 − ǫλ[(α+ j)(1−p) + j]/p i = j

ǫλj/p i = j − 1,

(24b)

so Xt is a linear birth-death process with immigration. The univariate marginal distribution and
autocorrelation (see Sec. (4.4)) are now

Xt ∼ NB(α, p)

Corr(Xs,Xt) = e−λ|s−t|,

and its restriction to integer times t ∈ Z is precisely the process described in Sec. (3) item 4, with
autocorrelation ρ = e−λ.

4.3 Markov Branching (Linear Birth/Death) Processes

The process Xt of Sec. (4.1) can also be described as the size of a population at time t if individuals
arrive in a Poisson stream with rate λθ and die or depart independently after exponential holding
times with rate λ; as such, it is a continuous-time Markov branching process.

Similarly, that of Sec. (4.2) can be described as the size of a population at time t if individuals
arrive in a Poisson stream with rate λα(1−p)/p, give birth (introducing one new individual) inde-
pendently at rate λ(1−p)/p, and die or depart at rate λ/p. In the limit as p→ 1 and α→ ∞ with
α(1−p) → θ this will converge in distribution to the Poisson example of Sec. (4.1).
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4.4 Marginal Distributions

Here we verify that the Poisson and Negative Binomial distributions are the stationary distributions
for the Markov chains with generators A given in Eqn. (23) and Eqn. (24), respectively.

Denote by π0
i = P[Xt = i] the pmf for Xt and by πǫ

i = P[Xt+ǫ = i] that for Xt+ǫ, and by
ϕ0(s) = E[sXt ] and ϕǫ(s) = E[sXt+ǫ] their generating functions. The stationarity requirement that
ϕ0(s) ≡ ϕǫ(s) will determine ϕ(s) and hence {πi} uniquely.

4.4.1 Poisson

From Eqn. (23b) for ǫ > 0 we have

πǫ
i = ǫλθπ0

i−1 + [1 − ǫλ(θ + i)]π0
i + ǫλ(i+ 1)π0

i+1 + o(ǫ).

Multiplying by si and summing, we get:

ϕǫ(s) = ǫλθs
∑

i≥1

si−1π0
i−1 + [1 − ǫλθ]ϕ0(s) − ǫλs

∑

i≥0

isi−1π0
i + ǫλ

∑

i≥0

(i+ 1)siπ0
i+1 + o(ǫ)

= ǫλθsϕ0(s) + [1 − ǫλθ]ϕ0(s) − ǫλsϕ′
0(s) + ǫλϕ′

0(s) + o(ǫ)

so

ϕǫ(s) − ϕ0(s) = ǫλ(s− 1)
[

θϕ0(s) − ϕ′
0(s)

]

+ o(ǫ)

and stationarity (ϕ0(s) ≡ ϕǫ(s)) entails λ = 0 or ϕ′
0(s)/ϕ0(s) ≡ θ, so logϕ0(s) ≡ (s− 1)θ and:

ϕ0(s) = exp {(s − 1)θ}

so Xt ∼ Po(θ) is the unique stationary distribution.

4.4.2 Negative Binomial

From Eqn. (24b) for ǫ > 0 we have

πǫ
i = (ǫλ(1−p)/p)(α + i− 1) π0

i−1 + {1 − (ǫλ/p)[(α + i)(1−p) + i]} π0
i + (ǫλ/p)(i+ 1) π0

i+1 + o(ǫ)

ϕǫ(s) = (ǫλ(1−p)/p)α sϕ0(s) + (ǫλ(1−p)/p) s2ϕ′
0(s)

+ ϕ0(s) − (ǫλ(1−p)/p)αϕ0(s) − (ǫλ/p)((1−p) + 1) sϕ′
0(s)

+ (ǫλ/p) ϕ′
0(s) + o(ǫ)

ϕǫ(s) − ϕ0(s) = (ǫλ/p)
{

ϕ0(s) α(1−p)(s− 1) + ϕ′
0(s) [(1−p)s2 − ((1−p) + 1)s+ 1]

}

+ o(ǫ)

= (ǫλ/p)(s − 1)
{

ϕ0(s) α(1−p) + ϕ′
0(s) ((1−p)s− 1)

}

+ o(ǫ)

so either λ = 0 (the trivial case where Xt ≡ X) or λ > 0 and:

ϕ′
0(s)/ϕ0(s) = α(1−p)(1 − (1−p)s)−1

logϕ0(s) = −α log(1 − (1−p)s) + α log(p)

ϕ0(s) = pα(1 − (1−p)s)−α

and Xt ∼ NB(α, p) is the unique stationary distribution.
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4.4.3 Alternate Proof

A detailed-balance argument (Hoel, Port and Stone, 1972, p. 105) shows that the stationary distri-
bution πi := P[Xt = i] for linear birth/death chains is proportional to

πi ∝
∏

0≤j<i

βj

δj+1

where βj and δj are the birth and death rates when Xt = j, respectively. For the Poisson case,
from Eqn. (23b) this is

πi ∝
∏

0≤j<i

λθ

λ(j + 1)
= θi/i!,

so Xt ∼ Po(θ), while for the Negative Binomial case from Eqn. (24b) we have

πi ∝
∏

0≤j<i

λ(α+ j)(1−p)/p

λ(j + 1)/p
=

Γ(α+ i)

Γ(α) i!
(1−p)i,

so Xt ∼ NB(α, p). In each case the proportionality constant is π0 = P [Xt = 0]: π0 = e−θ for the
Poisson case, and π0 = pα for the negative binomial.

4.4.4 Autocorrelation

Aside from the two trivial (iid and constant) cases, MISTI processes have finite pth moments for
all p <∞ and, in particular, have finite variance and well-defined autocorrelation. By the Markov
property and induction that autocorrelation must be of the form

Corr[Xs,Xt] = ρ−|t−s|

for some ρ ∈ [−1, 1]. In both the Poisson and negative binomial cases the one-step autocorrelation
ρ is nonnegative; without loss of generality we may take 0 < ρ < 1.

5 Discussion

The condition µθ({1}) > 0 introduced in Sec. (2.1) to avoid trivial technicalities is equivalent to
a requirement that the support spt(µθ) = N0 be all of the nonnegative integers. Without this
condition, for any MISTI process Xt and any integer k ∈ N the process Yt = kXt would also be
MISTI, leading to a wide range of essentially equivalent processes.

The branching approach of Sec. (4.3) could be used to generate a wider class of continuous-
time stationary Markov processes with ID marginal distributions (Vervaat, 1979; Steutel et al.,
1983). If families of size k ≥ 1 immigrate independently in Poisson streams at rate λk, with
∑

k≥1 λk log k < ∞, and if individuals (after independent exponential waiting times) either die
(at rate δ > 0) or give birth to some number j ≥ 1 of progeny (at rate βj ≥ 0), respectively,
with δ >

∑

j≥1 j βj , then the population size Xt at time t will be a Markov, infinitely-divisible,
stationary processes with nonnegative integer values. Unlike the MISTI processes, these may have
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infinite pth moments if
∑

k≥1 λkk
p = ∞ for some p > 0 and, in particular, may not have finite

means, variances, or autocorrelations.
Unless λk = 0 and βj = 0 for all k, j > 1, however, these will not be time-reversible, and hence

not MISTI. Decreases in population size are always of unit size (necessary for the Markov property
to hold), while increases might be of size k > 1 (if immigrating family sizes exceed one) or j > 1
(if multiple births occur).
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